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ABSTRACT 1. INTRODUCTION

Intuitively, model-based prognosis for a structare’
health management requires accurate estimation of
! . . model parameters. Here, model parameters which are
growth. Analytical expressions for the stress istin different from the true values are identified which

factor are available only for simple crack locasipn Lo ;
geometries and loading conditions. Therefore, actuaresu“ the same prediction in the model-based sign

damage arowth requires numerical solution. suchvas model. Once these model parameters are identified,
finite gler%ents Ho(\q/vever for estimating the ’u chya they can be used to predict the future behaviathef
in remaining useful life (RUL), thousanﬂdmsltg of system. However, many physical models are limited t

. : . simple conditions. For example, the Paris modetigPa
_S|mulat|ons .Of crack grovvt_h must be undertaken,cizvhl 1999) describes the rate of crack growth in terhs o
is computationally expensive. Here, an estimatéhef

error associated with RUL estimation based on anmaterlal properties and the stress intensity factoe

analytical stress intensity factor that does notsater 5|mple_st ava_|la_b I_e expression for the stress IMens
" ; factor is the infinite plate with a through-thedkiness
the effects of boundary conditions, crack locatmm

complex geometry is introduced. An effective damagecenter crack. In reality the stress intensity fadtoa

. o X ; complicated function of applied loading, boundar
parameter is identified Wr."Ch' although differendrh condpitions, crack position,p%eometry, gnd materi?:tll
the true value, results in accurate dgmage grqv"ﬂbroperties. Although there are many correctiondisct
prediction. ACW*".“ damage growth is simulated usingz, taking into account for finite plate size orged
the extended finite element method (XFEM) to mOdelcracks (Mukamai, 1987), still they are limited in
the effects of crack location and geometry on therepresenting comp;lex engi’neering systems
relationship between crack size and stress intpnsit The obijective of this paper is to demonétrate iihat
factor. The XFEM data are then perturbed with netse o\ a0 identification, one can use simple fsode
simulate measurements. The damage growth paramet{sor predict the remaining useful life even if they dot
is then identified using least square filtered Bsdge

. i model well actual behavior. This is accomplished
(LSFB) method. The identified parameter can then b%hrough the identification of an equivalent damage

used with the model to estimate the RUL. Examples rowth parameter that compensates for the differenc

mclud_e center and _edge cracks n a plate thagetween the model and the true stress intensitgrfac
experiences both horizontal and vertical finiteeef§ A square plate is chosen as the geometry for the

and stress concentrations caused by the presence Soblem The addition of cracks and holes to thepl
f .

cimates aré acourate even when an naccurates syeC2USS the crack tp state of stress t© experienie

intensity factor model is uséd p!ate _ effects in both the honzontgl and vertical
' directions as well as stress concentrations caongee

addition of holes to the plate. As no solution i®Wwn

to the authors which considers the vertical effettie

" This is an open-access article distributed unilertérms of damage growth is simulated using the extendedefinit

the Creative Commons Attribution 3.0 United Stdteense,  element method (XFEM) for calculating “true” stress

which permits unrestricted use, distribution, aedroduction  intensity factors and Paris law is used to grow the

in any medium, provided the original author andrseware  crack. XFEM (Mos, 1999) allows for discontinuities

credited. to be modeled independently of the finite element

Analytical damage growth equations, such as Paws |
need the stress intensity factor for predicting dgen
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mesh, which avoids costly remeshing as the craclstress at the crack tip. Concluding remarks andréut
grows. The stress intensity factors which are tinard work are presented in Section 5.

force for crack growth are calculated using the diom

form of the contour integrals (Shih, 1998). 2. CRACK GROWTH MODEL

In practice, the actual damage sizes are measured The Paris model (Paris, 1999) gives the fatigue

using structural health monitoring systems in wioch ; ) ;

board sensors and actuators are used to detec’gdamaCraCk growth rate as a fun(?t|on of material prapeiC

location and size. In this paper, instead of usiogal andmand the stress intensity factor rarigl as

measurement data, synthetic data are generated to da _ m

demonstrate the insensitivity of RUL to errors et aN (DK)". (1)

stress intensity model. First, the true values afis?

model parameters are assumed. Then, the true cradihis model is created from experimental observation

will grow according to the given parameters andFor a center crack in an infinite plate in Mode |

prescribed operating and loading conditions. Thius, loading, the stress intensity factor ranBK is given

true crack size at every measurement time is knownas

With the true crack size, the remaining useful ide

defined when the crack size reaches the criticaticr DK =s+pa (2)

size, which is a function of material, operatingda

loading conditions. It is assumed that the measentm

instruments may have a deterministic bias and nando

noise. These bias and noise are added to the rtagk c

sizes, which are denoted as synthetic measuredk crac sz

sizes. Then, these data are used to predict thetiet a= NC 1- m (5\/5)m+ Ei

damage growth parameters and thus the remaining 2

useful life. In this way, it is possible to evaleahe

accuracy of prognosis method. wherea, is the initial crack size ani, the number of
Of the many methods available for parametercycles at thé'™ measurement. Similarly, the number of

identification, the least-square-filtered Bayesian cycles to failure for a center crack in an infinjiiate

method (LSFB) (Coppe, 2009) is used to identify can be derived by integrating Eq. (1) as

where s is the applied stress aads the characteristic
crack size. The characteristic crack lengttat thei™
cycle derived from Egs. (1) and (2) is given as

N3

©)

damage growth parameters using the synthetic data. m m

This method applies nonlinear least-square metbod t _ ai'f - ail*2

the measurement data, so that the magnitude oé nois Ny = m )
can be reduced, followed by Bayesian inference, C1- ) (5\//7)

(Sheppard, 2005) to identify a probability disttibn
for model parameters. The identified distributioh 0 where a, is the critical crack size. Note th& is
damage growth parameters can then be used to pred"u‘ncertain because the initial crack size and damage

the d'SFr'bUt'on of remaining us_eful life. N growth parameters are uncertain. Although thecetiti
_An important question that is explored in this pape 50 size can be uncertain, it can be specified by
is whether or not a simple stress intensity modellte .11 as a criterion to fix the aamage

used for general crack geometries for the purpdse o In general, the accuracy of Eq. (2) depends on

rognosis. The key concept in this paper is that th : e
Ear?s model can beyconsidepred as anpexlira oladmn t geometrical effectfs, boundary conditions, crackpeha_l
p and crack location. A more general expression

Thus, even if the actual crack growth behavior is : :

different from that obtained with simplified stress (Mukamai, 1987) is

intensity expressions, Bayesian inference will tifgn DK =f (/)g ¥ a (5)

equivalent damage growth parameters, different from

the true ones, such that the model accurately gedi \here f (/) is the correction factor, given as the ratio

future damage growth behavior. i ) _
The paper is organized into the following sections. ©f the true stress intensity factor to the valuedgrted

In Section 2, the crack growth model is introduced. PY EQ. (2). The value of is given in terms of the

Section 3, the least-square-filtered Bayesian nieteo  9€0ometry and characteristic crack size and is probl

summarized. Results are presented in Section de thr dependent. An example of the effect that the ctimec

problems with increasingly complicated geometry, infactor f(/) can have on the stress intensity factor

the sense that the center crack in an infiniteepiabdel e for a range of crack sizes is shown in Figufer
is an increasingly bad predictor of the actuales@t 5 center crack in an infinite plate, center crackai
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finite plate, and an edge crack in a finite platethen used to generate a new estimate of the dasiege
(Mukamai, 1987). For this case the assumed platat thei™ cycle using Eq. (3), they are referred to as
width for the finite models was 0.2 m. filtered data.Those data are then used in Bayesian
updating in order to narrow down the distributidnno
and obtain a more accurate prognosis. The idettifje
and b are considered as deterministic, and only
uncertainty irmis considered in the Bayesian update.
Bayesian inference is based on the Bayes’ theorem
on conditional probability. It is used to obtaineth
updated (also called posterior) probability of adam
variable by using new information. In this papénce
the probability distribution ofn givena is of interest,
the following form of Bayes’ theorem is used (An,
2008)

L]
L
3
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Figure 1. Comparison of stress intensity respoase f Where fini the assumed (or prior) probability density

some correction factors and crack sizes. Platehvisdt function (PDF) ofm,. fupar the updgteql (or posterior)
200 mm. PDF of m andl(ajm) is called the likelihood function,

which is the probability of obtaining the charactéd
For complex geometry, analytical expressions ascrack lengtha for a given value ofn, the derivation of
given in Egs. (4) and (5) do not exist. In suchage;  the likelihood function can be found in Appendix A.
numerical methods can be used to calculate thesstre  The likelihood function is designed to integrate the
intensity factor DK and Eq. (1) can be numerically information obtained from structural health monitari
integrated to calculate the crack size as a funatib  (SHM) measurement to the knowledge about the

the number of cycles as is done in Appendix B. distribution of m. Instead of assuming an analytical
form of the likelihood function, uncertainty in

3. LEAST SQUARE FILTERED BAYESIAN measured crack sizes is propagated and estimated using
(LSFB) METHOD the Monte Carlo simulation (MCS). Although this

Bayesian updating and least square fit are ofted us process is computationally expensive, it will pravid

for identifying unknown model parameters and r‘asenaccurate information for the posterior distribution.
9 N P P Once the distribution o has been identified at
advantages and limitations, but they appear to be

o . ! tycle N;, it can be used to predict the remaining useful
complementary. Least square fits ability to idgnthe 2 (RUL). The distibution of RUL is calculated at
bias and reduce the noise makes it a useful tool t '

process the data in order to identify the distitnutof %very SHM measurement cydig using MCS and the

RUL using Bayesian updating. Note that we chose t RUL is estimated using Eq. (4) derived from Paris’.law

updatem here but similar results could be obtained byot]::alfe 22|b0t\;vif1 ttﬁlz"gopeerigwtaée the distribution and from

upqrar:g]gl_%gébggr;hpozgar?ce)éirssséosgier:?c?rrrﬁation collected The & percentile of Ny samples is used as a
P conservative estimate of RUL in order to have a safe

at every cycle by least square fit in order to edthe prediction. Since random noise is added to the gyiath
noise, and identify the biab, The least square problem data, the .result may vary with different sets ofadat
is expressed as Thus, the above process is repeated with 100 sets of
. meas 2 measurement data and mean plus and minus one
aTr'nr‘b _ (31 - b 4) (6) standard deviation intervals are plotted.
: In order to show the value of the LSFB method the
HRUL calculated using the distribution ofsrg and the
distribution (mean + one standard deviation) of tfe 5
ercentile of the distribution of RUL obtained usthg
pdated distribution ofm at each inspection are
compared.

where a™* are the synthetic measured crack sizes wit
noise model to simulate measurement data.

The LSFB method assumes in this paper that th
DK for the characteristic crack sizeis given by Eg.
(2), and an effective value af is identified resulting in
the same solution to Eq. (1) as though the tii¢
were known. The identified values a§, m andb are



Annual Conference of the Prognostics and Health idament Society, 2010

4. RESULTS occurred at 2070 cycles with a corresponding crack

For each example an aluminum 7075 square platel‘ength of 37.5 mm.

with edge lengths of 0.2 m and thickness 2.48 mm anc 1.1z
an initial crack size of 0.01 m is used. Aluminum 7075 : i : ;
of 0.33, critical mode | stress intensity fackgg of 30

MPa/m, Paris Law constan€ of 1.5E-10, and an “%1“"35 ’
assumed, deterministic Paris Law exponenbf 3.8. =

The plate is assumed to be an aircraft panel wiliusa % 1.08
3.25 m, which undergoes pressurization cycles of % 104k
amplitude 0.06 MPa. The relatively large initiahck G

size is chosen because many SHM sensors cannc
detect small cracks. In addition, there is no sigaific
crack growth when the size is small. However, thi siz 5 :
is still too small to threaten the safety of an laing. o 500 1000 iS50 2000 2600
True crack growth data was calculated using the Nurnber of Cycles [N]
extended finite element method using stress calculated
from the pressurization model. XFEM simulations were
performed on a Structured mesh Of Square |inear As the LSFB analySiS I’esultS in a final diStributiOI’l
guadrilateral elements with characteristic lengthlof Of mthe predicted crack lengths for this distribution are
mm. Each cycle of fatigue crack propagation wasPlotted and compared directly to the XFEM data in
modeled until the equivalent mode | stress intensityFigure 4. The XFEM data fall within the bounds bét

factor exceedetk,c. The characteristic crack length at LSFB identification.

1.021

Figure 3. Correction factor for center crack.

each iteration was then used in the identificatioramf 45 , R ;
equivalent Paris Law exponent through the use of the ——SFE Ideniification |
least-square-filtered Bayesian method with the 40 ——XFEM Datz .
simplified stress intensity formula, Eq. (2). i
E 365+ .
£
4.1 Center crack in a finite plate = 3l |
[
The first problem considered is that of a center EW | |
crack in a finite plate as shown in Figure 2. Oriig t <
right half of the plate was modeled with XFEM thgbu § 50 A
the use of symmetry.
151 -
'y A
trerreeeete . o
4 0 100C 1500 2000

2500
Murnber of Cyeles [M]
Figure 4. Comparison of XFEM crack growth data with
crack growth predicted from LSFB analysis.

_ Figure 5 shows in grey the distribution (mean + one
- 2H = standard deviation obtained from 100 sets of different
2a=0.02 m 0.2m measurements) of"Spercentile of RUL discussed in
- T Section 2 for that geometry, compared to the actual
remaining useful life for an arbitrarily chosen
deterministic critical damage siag of 25 mm.

A
\ 4

2W=0.2m

IRRRRRNRNNNN

Figure 2. A center crack in a finite plate.

<«

The corresponding curve of the correction factor
f (/) which this edge crack represented is given in

Figure 3. For this case, it was found that failure
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1800 : : 1.32
RUL estimate using updated m
Lo True RUL I 1.30(-
—1 1400+ . 1.28L.
= | [
& 1200t 1 2128
o %
2 1000} 1 L 24t
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3 800r 1 ?g 122y
& 600} 1 512
£ 8 1.20r
© 400t . 118
0 ‘ ‘ : 114 5 i % _
0 500 1000 1500 D 700 400 600 8OO 100D 120D
Number of cycles at inspection Murther of Cyclas [M)
Figure 5. Distribution (mean + one standard devigtion Figure 7. Correction factor for edge crack.

of 5" percentile of RUL for a center crack. _ ) _ o
As the LSFB analysis results in a final distribution

It can be observed that the estimate of RULof mthe predicted crack lengths for this distribution are
converges to the actual remaining useful life fréva t plotted and compared directly to the XFEM data in

conservative side. Figure 8. The XFEM data fall within the bounds bét
LSFB identification. Compared to the case of a aente
4.2 Edge crack in a finite plate crack in an infinite plate the range of the ideadf

Next an edge crack na e piate was consiere (S110010n o i wider wieh 1 ey caused by e
as shown in Figure 6. For this case the boundary

conditions were fixing the lower right hand correerd models for the stress intensity factor.

allowing the top right corner to only move in the a5 : :
vertical direction. ——|SFB ldenfification

£44444444444 —rMbes

»

H=
<> 0.2 m 7
a=0.0l m | , : : i
100200 400 600 800 1000 1200
< » Hurrber of Cyelas [M]
W=0.2m

Figure 8. Comparison of XFEM crack growth data with
crack growth predicted from LSFB analysis.

b l l l l l l l l l l l ! Figure 9 shows the distribution of'fercentile of

Figure 6. Edge crack in a finite plate. RUL discussed in Section 2 for that geometry,
compared to the actual remaining useful life. Astfar
previous geometry it can be observed that the estimat
of RUL converges to the actual value from the
conservative side.

The correction factor corresponding to the finiteeetf
which this edge crack represented is given in Figure
For this case, it was found that failure occurredGit8
cycles with a corresponding crack length of 27.2 mm.
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Figure 9. Distribution (mean + one standard devigtion Figure 11. Correction factor for plate with holes.

of 5" percentile of RUL for an edge crack. _ ) _ o
As the LSFB analysis results in a final distribution

of m the predicted crack lengths for this distribution are

plotted and compared directly to the XFEM data in
The final example considers differences betweenFigure 8. The XFEM data fall within the bounds lbét

the actual and predicted model that may be caused biySFB identification. The identified crack size

localized stress concentrations in structures. Fowshol distribution is wider than others which corresponds to

are inserted into the plate as shown in Figure Ily O the model being increasingly far away from reality.

the right half of the plate was modeled with XFEM .

through the use of symmetry. ¥ rgL::FBMenm‘zaﬁm

trtttttireets &

4.3 Center crack in a plate with holes

[
L=]

= E
0.04 m £
@ Q E 25 | |
=2
5
—
R SRR Mt ]
2W= g
0.2m -] — |

°a =0.02m

10y= 00 200 00 800
0.5W Murriber of Gycles [N]

v Figure 12. Comparison of XFEM crack growth data

v l l l l l l l l l l l v with crack growth predicted from LSFB analysis.

Figure 13 shows the distribution of Bercentile of
Figure 10. Center crack in a finite plate with fole RUL discussed in Section 2 for that geometry,
gompared to the actual remaining useful life for a
o ) critical damage size of 24 mm. As for the previous
are unaware of an approximation té (/). This geometries it can be observed that the estimate of RUL
correction factor obtained from XFEM is shown in converges to the actual value from the conservative
Figure 11. For this case, it was found that failureside. It has to be observed that the estimation isasot
occurred at 625 cycles with a corresponding crackaccurate but this can be explained by the fact tthet
length of 24.2 mm. geometry is very different from the one assumed én th

model and the number of cycles to failure is much

smaller.

Unlike the other examples presented, the author
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700 . : : . . likelihood I(alm) that for a given set of material
- T e propertiesm or C, aT®* = a ™ or in other words:
= - d=a;"- ay*= 0 ®)
E, 400} ] If analytical expressions for the PDFs af*** and
5 - ay" are available they can be used to obtain the PDF
9 300l _
?g_ of d, then the value of this PDF a = 0 is the
£ 200} : likelihood function. Since this rarely happens, MCS
o will be used as the likelihood function
100+ .
; , . . . . I(alm)=P(d/£ ). (9)
0 100 200 300 400 500 600
Number of cycles at inspection Note that the integration overis just a normalizing

constant that is taken care of by the normalization i
the Bayesian formulation.

If the likelihood I(a|m) is calculated purely by
5. CONCLUDING REMARKS samplingaj** and, aj™ then the tolerance needs to

Effective damage growth parameters werebe large enough to include enough sample points to
identified using the LSFB method for cases of finite reduce the sampling error to acceptable levels.Hen t
and geometric effects. The stress intensity factorother hand ife is large, errors will increase due to
relationship was assumed to follow the center ciack nonlinearity in the likelihood function.
an infinite plate and the Paris Law exponemtwas It is assumed that the measurement error that
identified which is correct for the incorrect stress controls aj** is independent of the modeling errors

intensity factor relationship. Damage growth wasinat control asm . In that case, separable sampling

simulated at each loading cycle through the uséhef t b ¢ d b . I ibl
extended finite element method with a reanaly5|scan b€ ~performed by ~comparing all - possible
combinations of two individual samples.

algorithm. sm . .
This represents the versatility of the proposed The PDF of ‘?‘N s not ava|lal?le analytlc.all'y,
method in that it does not requiaepriori knowledge of ~ because it is obtained from propagation of unceitsint

the correction factorf(/) The mean value of the through an analysis code. On the other hand, the
measurement errors are assumed rather than

updated distribution ofn and the RUL curves show propagated, and they are here assumed to be urifiorm
good agreement with the simulated results. It isy3 pounded region. It is investigated how to take

especially encouraging that the RUL converges fromadvantage of the given distribution af™= in
the conservative side.

The method is demonstrated here updating only on@rOIer .to |mpr0ye the mzf?mency or 3mccuracy of the
parameter,m, of Paris’ law, the same idea can be S8MPHing. In this casay and a)™ are scalar,
applied to the parametemsandC together. This should such that
allow for even more accurate results because it would
allow for more flexibility in fitting the equivaldn | |

Figure 13. Distribution (mean + one standard dewitio
of 5" percentile of RUL for a plate with holes.

model. The feasibility of using XFEM in the -(10)
calculation of the likelihood function will also be
explored which may identify the trumandC. Using conditional expectation on the second term
on the right-hand side the following expression is

APPENDIX A: LIKELIHOOD FOR BAYESIAN obtained:

INFERENCE

The idea is to identify the damage parametersr
C from the measured half crack size that is (12)

contaminated by measurement errors. In order to do
that, the measurements are compared to the simulated
crack size defined above. In order to use the

information in Bayes law, it is necessary to estimhaée t
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where fg,.(X) is the PDF ofas™ and Fy,(X)

is the CDF ofag" . The last relation is obtained

from the definition of CDF; i.e., by consideringf;**
as the only random variable,

P 8" e)= Fuu(ai® ¢

. Similarly, the first term
can be written as

O R I T
= L Fualre )1 fat) oy

By combining Egs. (11) and (12), the likelihood can

be written as

(13)

where the central finite difference approximation i

used in the second relation, which becomes exaehwh

For everym:
M samples of:a)",, = aves + v,

With
&= ONC 1-0 (s )"+ () =

la|m)=1 " f (

meas
M iy

APPENDIX B: EXTENDED FINITE ELEMENT
METHOD

Modeling crack growth in a traditional finite
element framework is a challenging engineering .task
The finite element framework is not well suited for
modeling crack growth because the domain of interes
is defined by the mesh. At each increment of crack
growth, at least the domain surrounding the crégk t
must be remeshed such that the updated crack ggomet
is accurately represented. If a large number ofesyc
are to be considered, this repeated remeshing can

sim
&)

0 . As explained before, since the posterior consume a large amount of the computational time fo

PDF will be normalized, the coefficient 2can be
ignored. The above expression is

in particular

the analysis.
The extended finite element method (XFEM)

convenient for separable MCS because the analyticad|ows discontinuities to be represented indepetiglen

expression offmeas(x) is known, and

of the finite element mesh (Ms, 1999). Arbitrarily

can be evaluated by propagating uncertainty througtPiented discontinuities can be modeled by enrigtaith
numerical simulation. LeM be the number of samples €léments cut by a discontinuity using enrichment

in MCS, the likelihood can then be calculated by

| (al m) = asm fmeas( asll\lm) f sirr( asll\lm)d aslilm
»i " f
i=1

| (14)
meas @50

In the literature (Li, 2009), the Gaussian functisn
often assumed for the likelihood function. In adbdtit

functions satisfying the discontinuous behavior and
additional nodal degrees of freedom. For the cdse o
domain containing a crack and voids (Daux, 2008) th
approximation is:

u"()=V N y+Ha+F, B (15)

where N, are the finite element shape functidn,s

the expression of this function remains unchangedhe void enrichment functionH is the Heaviside

throughout the entire process. However, the likelth
function is quite different from the Gaussian fuont

enrichment functionF , are the crack tip enrichment
functions, andu, , a , and b, are the classical and

and it varies at different crack sizes. Since thegpriched degrees of freedom (DOF).

uncertainty structure of the posterior distribution

strongly depends on the likelihood function in Bsiga
inference, the error in the likelihood calculatirectly
affects the accuracy of the posterior distribution.

In the case presented here is the PDF

corresponding to the uniform distribution of the

measure damage size.
Input data:agess, , ay*™

l Discretizem

To decrease the computational time for the repeated
solutions, a reanalysis algorithm (Pais, 2010) ssdu
which takes advantage of the large constant podifon
the global stiffness matrix represented Ky, K.,

andK_, .

The mixed-mode stress intensity factésand K,
for the given cracked geometry were calculated gisin
the domain form of the interaction integrals (Shih,
1988). The direction of crack growth was calculated
using the maximum circumferential stress criterion
(Shih, 1998). The effective stress intensity factor
(Tanaka, 1974) given as
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the vertical finite effect as a function of the riagn of

—4 4 4
Do Ky 8K, (16) cycles is shown in Figure 15.

was used to convert the mixed-mode stress iNtensity 42 e, S B '

factors into a single value for used in Paris |ale — Thoorafical
K h at . lei K . ==X, H=0.125
crack growth at a given cycle is given as AOH wonvers XFEM, H = 0.400 |

-
13

Da =C( DK )" (17)

The implementation of XFEM used here was
verified using the center crack in a finite plateldem
given in Section 3.1. For this problem the thecsdti
finite correction factor based on the equations of :
elasticity for a center crack in a finite plate (kdunai, 12 s
1987) is given as : i :

Firite Correction Factor
P
=

180 i j ; i i
o 500 W00 1500 2000 2500

2 4 e, F G d
f(/ ) =\/S€C % 1_/4_0+ % (18) Numbear of Cyeles [
Figure 15. Theoretical and XFEM prediction b(/ ) .

where / =a/W gnda anW are the half crack length ACKNOWLEDGMENT
and half plate width. This model assumes that tatep . . ]
is finite in the x-direction and infinite in thedirection. ‘This work was supported by the Air Force Office of

number of cycles was first performed to ensure theand by the NASA under Grant NNX08AC334.
accuracy of the XFEM data provided to the NOMENCLATURE

identification routine. As there is no closed form
solution for the crack size as a functionNoflue to the
finite correction factor given in Eq. (5) the fomsla
Euler method with 10steps was used. This step size
represents less than 0.1 percent change frohst&ps.

A comparison of the results is shown in Figure 14.
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critical crack length

crack length at cycle N

initial crack length

bias applied to crack size data
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